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Quantifying Multi-Objective Tradeoffs under Deep Uncertainty   
in the Design of Sea-Level Rise Adaptation Strategies 

 
 

•  The van Dantzig (1956) model is a widely used but incomplete 
flood risk management framework. 

•  It can nonetheless be used as a didactic tool to investigate 
alternative model formulations and sensitivities. 

•  Improving the model scientifically by upgrading the sea-level rise 
and storm surge determinations results in significant changes to 
the considered management solution.  

•  Local OAT analysis can describe sensitivities to model parameters 
but excludes potentially important interactions. 

•  Global Sobol sensitivity analysis identifies interactions and 
nonlinearities between model parameters. 
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  The effects of climate change are expected to raise global mean 
sea levels up to 1.8 meters by 2100. Sea level changes as small as 
0.25 meters can increase flood risks by several orders of magnitude. 
Risk-prone areas commonly employ probabilistic risk assessments to 
inform flood management strategies.  

  The van Dantzig (1956) model was first developed as a 
response to the 1953 North Sea to determine optimal dike heights by 
minimizing the net present value (NPV)  of total protection costs. 
However, the model has several deficiencies that limit its efficacy for 
modern decision-makers: 

•  It is silent on many structural and parametric uncertainties  
(Table 1) 

•  Considers only a single management objective 

Figure 1. Sea-level rise hindcasts and projections to year 2100 . Shown are the 
polynomial model with uncertainty and the potential contribution of abrupt sea-level rise. 
Green line represents original van Dantzig (1956) linear approximation. The marginal 
PDF in gray approximates the expert assessment of sea-level-rise at year 2100 using an 
expert assessment beta distribution (A) and a uniform distribution (B). 

Figure 2. Observed and projected return levels (A) and return periods (B) for 
Delfzijl, the Netherlands. Shaded envelopes represent the 90% confidence interval 
and the 90% credible interval for the MLE and Markov Chain Monte Carlo methods, 
respectively. Solid lines show expected outcome for each method. Dashed line 
represents the van Dantzig (1956) linear extrapolation. 

Figure 4. Results of van Dantzig optimization for 4 model versions, with increasing 
complexity. In panels B–D, gray line represents expected total cost curve, with the point 
representing the index of the minimum expected NPV for total costs (van Dantzig (1956) 
objective).  

Figure 3. Multi-objective 
tradeoffs under 
uncertainty. Solid lines 
represent extent of 
baseline tradeoffs, and 
points indicate the index of 
the minimum expected net 
present value for total 
costs in the baseline 
model. Color shading 
represents the density of 
different outcomes. The 
green star represents the 
ideal solution according to 
each objective criteria. 

Conclusions 

References 

Discussion 

Figure 6. Results of Sobol sensitivity analysis for 
four management objectives. Solid circles represent 
the model sensitivity that can be directly attributed to 
a given parameter, connecting lines represent 
interactions between parameters, and white circles 
indicate total order sensitivities. 

Figure 5. One-at-a-time (OAT) sensitivity analysis for 
four management objectives with updated sea-level 
rise and storm surge models. Model parameters were 
held constant while varying a single one from the 1st – 
99th quantile of the prior distribution 
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Prior Unit Distribution
Prior

mean (std. dev.)
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Value of goods  (V) 2 x 10
10

Guilders Value of goods  (V) Normal 2 x 10
10 (1 x 10

9
) Guilders

Effective discount rate  ( ') 0.02 Percent/yr Effective discount rate  ( ') Lognormal 0.02 (0.1) Percent/yr

Cost rate of heightening  (k) 4.2 x 10
7

Guilders/m Cost rate of heightening  (k) Normal 4.2 x 107 (4 x 106) Guilders/m

Subsidence rate  ( ) 0.002 m/yr Subsidence rate  ( ) Lognormal 0.002 (0.1) m/yr

Sea level rise in 2015  (a) -17.0–76.0 mm

Sea level rise rate  (b) -0.70–3.9 mm/yr

Sea level rise acceleration  (c) -0.0075–0.013 mm/yr
2

Year of abrupt sea level rise  (t*) Deeply uncertain 2015–2090 Year

Rate of abrupt sea level rise  (c*) Deeply uncertain 0–0.035 m/yr

Initial flood frequency  (p0) 0.0038 Unitless Anomaly location parameter  ( ) -0.14–0.094 Unitless

Anomaly scale parameter  (µ) 278–291 Unitless

Anomaly shape parameter  ( ) 3.68–3.92 Unitless
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 Here we implement and improve on a classic dike height model 
to represent multiple stakeholder objectives and parametric and 
structural model uncertainties.  We use global sensitivity analyses to 
determine: 

1.  the effects of structural and parametric uncertainties in a 
classic economic model of sea-level rise adaptation  

2.  the multi-objective tradeoffs between key management 
objectives  

3.  the parametric uncertainties that matter most for a given 
objective 

Model development   
•  Code baseline model into R and evaluate against van Dantzig 

(1956) to ensure it replicates results. 
•  Use Latin hypercube sampling to establish parametric uncertainty. 
•  Determine additional management objectives that can be 

evaluated in addition to Discounted total costs: 
 - Discounted damages [minimize] 
 - Reliability [maximize] 
 - Investment costs [minimize] 

•  Evaluate model for each dike height from 0 – 10 meters. 

Sea-level rise model 
•  Analyze tide gauge measurements from Delfzijl, the Netherlands. 
•  Use rejection sampling to calibrate 2nd order polynomial function to 

project sea-level rise up to year 2100. 

Storm surge model 
•  Determine annual block maxima tide gauge observations and 

determine maximum likelihood estimation (MLE) for three 
generalized extreme value (GEV) parameters. 

•  Use Markov-Chain Monte Carlo to produce parameter chains for 
each GEV parameter. 

Sensitivity Analysis 
•  Perform local sensitivity study using One-at-a-time analysis. 
•  Evaluate parameter interactions using Sobol sensitivity analysis 

(SALib framework). 

A. Discounted total costs B. Reliability

C. Investment costs
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•  Parametric uncertainty alone has a small effect on the optimal dike 
height (5 cm) but may result in nontrivial costs. 

•  Increasing model complexity raises the optimal dike height by 1.9 
meters as compared to the baseline model. 

•  Deep uncertainties in sea-level rise projections result in a 30 cm 
difference in optimal dike height when using a uniform vs. beta 
prior distribution.  

•  GEV storm surge projections have both larger upper limits and 
expected return levels than MLE estimates for all return periods. 

•  Storm surge parameters dominate sensitivity analysis for 3 out of 
4 objectives. 

•  The Investment Cost objective dictates the nonlinear tradeoffs 
between objectives. 

•  Sobol sensitivity analysis captures significant interactions terms 
not identified by local methods. 

Table 1. Parameter values for van Dantzig (1956) and this study.  
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Figure 7. Site locations of 
van Dantzig (1956) study and 
the Delfzijl tide gauge used in 
this study. Annual block 
maxima records were used to 
calculate the storm surge 
GEV distributions. 


